Advokat-86.ru

Помощь адвоката
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Абсолютно упругий и неупругий удар двух тел; формулы и примеры расчетов

Абсолютно упругий и неупругий удар двух тел — формулы и примеры расчетов

Удары (или столкновения) – самый очевидный способ взаимодействия тел. Тем не менее, их рассмотрение выходит далеко за рамки бытовых вопросов. Физики используют такое определение удара: взаимодействие движущихся тел, при котором временем соприкосновения можно пренебречь. В первую очередь рассматриваются абсолютно упругий и неупругий удары.

Импульс силы

Количество движения многие называют просто импульсом. Это не совсем верно, поскольку под последним понимают воздействие силы на объект в течение некоторого промежутка времени.

Если сила (F) не зависит от времени ее действия (t), тогда импульс силы (P) в классической механике записывается следующей формулой:

Пользуясь законом Ньютона, перепишем это выражение так:

Здесь a — сообщаемое телу массой m ускорение. Поскольку действующая сила не зависит от времени, то ускорение является постоянной величиной, которая определяется отношением скорости ко времени, то есть:

P = m*a*t = m*v/t*t = m*v.

Мы получили интересный результат: импульс силы равен количеству движения, которое он сообщает телу. Именно поэтому многие физики просто опускают слово «сила» и говорят импульс, имея в виду количество движения.

Записанные формулы также ведут к одному важному выводу: при отсутствии внешних сил любые внутренние взаимодействия в системе сохраняют ее суммарное количество движения (импульс силы равен нулю). Последняя формулировка известна в качестве закона сохранения импульса изолированной системы тел.

Абсолютно упругий удар

Кратко суть абсолютно упругого удара опишем так: Два бильярдных шара катились, без деформации ударились, и разбежались в разные стороны.

Составим рисунок для ситуации до удара. Отметим на рисунке массу каждого шара. Скорости шаров укажем с помощью векторов, направленных по движению каждого шара.

Запишем импульсы шаров до удара

Нарисуем ось, чтобы определить знаки импульсов каждого шара. Сонаправленный с осью импульс имеет знак «+», направленный против оси – знак «-».

Сложим импульсы и найдем общий импульс системы – вектор (vec>> ).

Каждый импульс записываем со своим знаком

На втором рисунке опишем задачу после абсолютно упругого удара.

Укажем массы шаров, их скорости нарисуем стрелками в направлении движения каждого шара. Обозначим скорости символами (vec>> ) и (vec>> ).

С помощью проведенной оси выбираем знаки импульсов шаров.

Составим выражение для общего импульса после удара.

Для замкнутой системы выполняется закон сохранения импульса

Запишем его в развернутом виде для абсолютно упругого удара:

При абсолютно упругом ударе:
— Выполняется закон сохранения импульса,
— Выполняется закон сохранения энергии.

Законы сохранения энергии и импульса. Упругие и неупругие столкновения.

Закон сохранения импульса

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса.

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Закон сохранения энергии

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии.

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

Читать еще:  Заверить заявление о расторжении брака у натариуса сколько стоит

,

где приведенная масса шаров. Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Абсолютно упругий удар – столкновение двух тел, в результате которого механическая энергия системы остается прежней.

Два шара , с и до соударения и и после. По закону сохранения импульса и энергии: , . Решением системы может стать и . Это значит, что шары не встретились. Потребуем и и перепишем уравнения в виде: , . Второе уравнение делим почленно на первое и получаем . Решаем систему из двух линейных уравнений и имеем: , .

Абсолютно неупругий удар. Скорость

Абсолютно неупругий удар – это ударное взаимодействие с соединением (слипанием) движущихся тел.

Сохранение механической энергии отсутствует, так как переходит во внутреннюю, то есть нагревание.

Попадание пули в баллистический маятник – характерный пример действия энергии абсолютно неупругого удара, где
М – подвешенный ящик с песком, показанный на рисунке 1 . 21 . 1 , m – горизонтально летящая пуля с v → скоростью движения, застревающая в ящике. Определение скорости пули возможно по отклонению маятника.

Если скорость ящика с пулей обозначить как u → , тогда, используя формулу сохранения импульса, получаем:

m v = ( M + m ) u ; u = m M + m v .

Когда пуля застревает в песке, то механическая энергия теряется:

∆ E = m v 2 2 — ( M + m ) u 2 2 = M M + m · m v 2 2 .

M ( M + m ) обозначает долю кинетической энергии выпущенной пули и прошедшей во внутреннюю энергию системы. Тогда

∆ E E 0 = M M + m = 1 1 + m M .

Использование формулы подходит для задач с наличием баллистического маятника и другого неупругого соударения разномасных тел.

Когда m М ∆ E E 0 → 1 2 , тогда происходит переход кинетической энергии во внутреннюю. Когда m = M ∆ E E 0 → 0 , только половина кинетической переходит во внутреннюю. Если имеется неупругое соударение движущегося тела большей массой с неподвижным, имеющим ( m > > М ) , отношение принимает вид ∆ E E 0 → 0 .

Читать еще:  Жалоба на сотрудника билайн образец 2020

Расчет движения маятника производится по закону сохранения механической энергии. Получаем

( M + m ) u 2 2 = ( M + m ) g h ; u 2 = 2 g h .

В данном случае h является максимальной высотой подъема маятника. Отсюда следует, что

v = M + m m 2 g h .

При известной высоте h возможно определение скорости пули v .

Рисунок 1 . 21 . 1 . Баллистический маятник.

По теме: методические разработки, презентации и конспекты

Цель урока — изучение законов сохранения импульса и энергии на примере изучения скорости пули и энергии диссипации при абсолютно неупругом ударе.

Практическая работа № 1 является частью практикума 10 класса.

Бланк для подготовки, организации проведения и оформления экспериментальной задачи в 10 классе на тему: «Применение Закона сохранения энергии и Закона сохранения импульса к решению экспериментальной з.

Презентация к уроку «Абсолютно упругий и неупругий удар» для учащихся 10 класса. В процессе объяснения учащиеся по вариантам решают задачи на соударение.

Урок 12. Лабораторная работа № 02. Изучение закона сохранения импульса

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Лабораторная работа № 2

Тема: Изучение закона сохранения импульса

Цель: экспериментально проверить справедливость закона сохранения импульса тел при прямом упругом соударении

Оборудование: 1. Два металлических шарика разной массы.

2. Рама для подвеса шариков.

3. Измерительная линейка.

Величина, равная произведению массы материальной точки на ее скорость, называется импульсом.

p=mυ

p — импульс тела

υ — скорость тела

Импульс тела направлен в ту же сторону, что и скорость тела.

Единицей измерения импульса в СИ является 1 кг·м/с.

Изменение импульса тела происходит при взаимодействии тел, например, при ударах.

Для системы материальных точек полный импульс равен сумме импульсов. При этом следует иметь в виду, что импульс – это векторная величина, и поэтому в общем случае импульсы складываются как векторы, т.е. по правилу параллелограмма.

Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой. Замкнутая система – это система тел, которые взаимодействуют только друг с другом.

Закон сохранения импульса: в замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

m1, m2 — массы взаимодействующих тел, кг

Закон сохранения импульса можно сформулировать и так: если на тела системы действуют только силы взаимодействия между ними («внутренние силы»), то полный импульс системы тел не изменяется со временем, т.е. сохраняется. Этот закон применим к системе, состоящей из любого числа тел. Отметим еще раз, что импульс – величина векторная, поэтому сохранение полного импульса означает сохранение не только его величины, но и направления.

Закон сохранения импульса выполняется при распаде тела на части и при абсолютно неупругом ударе, когда соударяющиеся тела соединяются в одно. Если распад или удар происходят в течение малого промежутка времени, то закон сохранения импульса приближенно выполняется для этих процессов даже при наличии внешних сил, действующих на тела системы со стороны тел, не входящих в нее, т.к. за малое время внешние силы не успевают значительно изменить импульс системы.

Под ударом в механике понимается кратковременное взаимодейс­твие двух или более тел, возникающее в результате их соприкосно­вения (соударение шаров, удар молота о наковальню и др.). Самым простым является прямой (центральный) удар, то есть такой удар, при котором скорости соударяющихся тел до удара направлены по линии, соединя­ющей центры тел. При соударении взаимодействие длится такой короткий промежуток времени (иногда измеряемый тысячными долями секунды) и возни­кают столь большие внутренние силы взаимодействия, что внешними силами можно пренебречь и систему соударяющихся тел можно считать замкнутой и применять к ней закон сохранения импульса.

Читать еще:  Где выдают справки с места жительства в орле

В зависимости от упругих свойств тел соударения могут проте­кать весьма различно. Принято выделять два крайних случая: абсо­лютно упругий и абсолютно неупругий удары.

Абсолютно упругим называется удар, при котором после взаимодействия тела полностью восстанавливают свою форму. Таких ударов в природе не существует, так как всегда часть энергии затрачивается на необратимую деформацию тел. Однако для некоторых тел, например стальных закаленных шаров, потерями механической энергии при столкновении можно пренебречь и считать удар абсолютно упру­гим. В случае центрального абсолютно упругого удара двух тел с массами m1, m2 и скоростями υ1, υ2 до удара и υ′1, υ′2 после удара можно записать закон сохранения импульса тел:

Абсолютно неупругим называется удар, при котором после соп­рикосновения тел они не восстанавливают полностью свою форму, со­единяются вместе и движутся как единое целое с одной скоростью. При этом ударе часть их механической энергии переходит в работу деформации тел (внутреннюю энергию). Столкновение двух шаров из пластилина, когда после столкновения шары слипаются и движутся вместе, является примером абсолютно неупругого удара. В случае центрального абсолютно неупругого удара двух тел с массами m1, m2 движущихся со скоростями υ1, υ2 до удара и υ′ после удара можно записать законы сохранения импульса тел:

Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике — при забивании свай, ковке металлов и т.д

Описание работы

Установка состоит из двух стальных шаров, на длинных подвесах и измерительной линейки под шарами. Центры масс соприкасающихся шарв лежат на одном уровне от точки подвеса. Отведя один из шаров (например, большей массы) в сторону и отпустив его, можно произвести прямой (центральный) удар шаров.

Если до столкновения один из шаров покоился υ2=0, то выражение закона сохранения импульса упростится. При прямом ударе оба шара после столкновения движутся по одной прямой, поэтому от векторной формы записи закона сохранения импульса можно перейти к алгебраической и учитывая, что после столкновения оба шара движутся в одном направлении, получим:

Для определения скорости первого шара υ1 до удара и скоростей шаров υ′1 и υ′2 после удара воспользуемся законом сохранения механической энергии. Потенциальная энергия шара в положении максимального отклонения равняется его кинетической энергии при ударе , отсюда .

Высоту подъёма шара можно определить по его максимальному отклонению s от положения равновесия (рис.3,а).

Треугольник АВС прямоугольный (опирается на диаметр). Катет АВ является средней пропорциональной величиной между гипотенузой АС=2 l и своей проекцией на гипотенузу АD (рис.3,б): АВ 2 =АС·AD то есть , откуда . Следовательно, величины скоростей можно выразить так: где S, S1 — максимальные отклонения первого шара до и после удара; S2 — максимальное отклонение второго шара после удара.

Запишем уравнение закона сохранения через выражения скоростей:

или m1∙S= m1∙S1 + m2∙S2.

Таким образом, проверка закона сохранения импульса в данной работе сводится к проверке справедливости последнего уравнения.

При малых углах отклонения шара от положения равновесия S, S1 и S2 можно заменить соответствующими величинами, отсчитанными по горизонтальной шкале.

Выполнение работы.

1. Перенесите рисунок 2 в отчет по работе.

2. Подготовьте в тетради таблицу для записи результатов измерений и вычислений:

m1,
г

m2,
г

S,
мм

S1,
мм

S2,
мм

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector